Contemporary vaccination against the influenza virus has the distinct limitation of transient effectiveness due to the phenomenon of periodic antigenic shift by which the virus mutates to outpace vaccination. However, by targeting a different, more conserved (unchanging) area of the virus, a universal vaccine may be produced that does not need to be updated seasonally.

While a universal vaccine is desirable, it has been difficult to create a vaccine that elicits an immune response for the conserved domain of the virus. By this technology’s fusion of a mucosal adjuvant with the highly conserved M2 epitope of the influenza virus, a stronger immune response can be induced, making the vaccine effective. Furthermore, this vaccine is administered intranasally, eliminating the pain and discomfort of traditional vaccination by needle injection.

Market Applications:

- Pharmaceuticals (Vaccines)

Features, Benefits & Advantages:

- Elimination of the need to annually update and readminister influenza vaccines
- Intranasal administration eliminates pain and discomfort of needle administration
- Intranasal administration stimulates a mucosal immune response, a critical characteristic for pathogen clearance of respiratory tract pathogens

Development Stage:

Preliminary experimental data has provided proof of concept. In vivo results have been recorded.